Ann,
For Rotary Evaps, they are fixed with a vacuum pump. The pump should have a trap (sometimes two) in-line prior to the pump. The exhaust from the pump is typically "tubed" into the exhaust of the hood.
Ductless for a rotovap...I would guess such a hood is possible but pump exhaust is the primary concern (I would think).
Also, the atmospheric introduction is usually done under nitrogen, with a bleed-off line. Not often is the system "thrown" (i.e., increased to 760mmHg) into the fume hood environment directly.
You might want to ask both the rotary evap and hood manufacturers for guidance on this specific operation.
Hope this helps.
-George D. McCallion
medchem**At_Symbol_Here**comcast.net
From: "Ann Klotz" < >
To: DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU
Sent: Friday, October 12, 2012 7:38:53 AM
Subject: Re: [DCHAS-L] Advice on our new science building
Is anyone using the ductless-filtration fume hoods for rotary evaporators?
--
Ann Klotz
School of Science
Siena College
515 Loudon Road
Loudonville, NY 12211-1462
Office Phone: 518-783-2402
Cell Phone 518-860-8489
From: Bruce Van Scoy <brucev**At_Symbol_Here**BRIGHT.NET<mailto:brucev**At_Symbol_Here**BRIGHT.NET>>
Reply-To: DCHAS-L <DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU<mailto:DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU>>
Date: Thu, 11 Oct 2012 19:05:11 -0400
To: "DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU<mailto:DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU>" <DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU<mailto:DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU>>
Subject: Re: [DCHAS-L] Advice on our new science building
I'm curious, what controls will be implemented to ensure:
1. Only chemicals that are adequately removed will be used?
2. Considering the lack of PEL's or other OEL's, how is "adequately" from the first question being determined?
3. What review process is in place to ensure that future experiments or ductless fume hood use will use only those chemicals that the ductless fume hood can adequately remove to maintain compliance?
4. Is the total filter load being tracked or are you simply relying upon the sensors sensitivity to measure at breakthrough?
5. Specifically what type of sensors are being used?
6. Do the sensors degrade over time, like a reduction-oxidation sensor?
7. What calibration frequency is being established for the sensors?
8. Are the sensors capable of detecting ALL of the chemicals that are going to be used in the ductless fume hood?
9. Does the sensor have any sensitivity or cross reactivity to all of the chemicals which could possibly be used?
I think in limited scope/application these fume hoods have a valid purpose and can provide for an adequate safety margin.
But, science is about learning and incorporating change. Will the future use be within the scope of design or are you severely limiting the future science operations being performed? Please don't get me wrong, I love ERLAB's Toxicap Fume Hood for where I am having it used. I had to replace the filters due to age, with 1/10th of the total filter loading potential. If you don=E2=80™t need the performance of a totally enclosing fume-hood, have you considered snorkel point-source exhaust? Point source exhausts are also lower total volume (saving energy), but what they do exhaust is the most concentrated contaminant load?
I've been following the thread and had a few questions. What experiences has everyone else encountered? I don't want to rule out or limit the options.
BruceV
From: DCHAS-L Discussion List [mailto:dchas-l**At_Symbol_Here**MED.CORNELL.EDU] On Behalf Of ACTSNYC**At_Symbol_Here**CS.COM<mailto:ACTSNYC**At_Symbol_Here**CS.COM>
Sent: Thursday, October 11, 2012 9:42 AM
To: DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU<mailto:DCHAS-L**At_Symbol_Here**MED.CORNELL.EDU>
Subject: Re: [DCHAS-L] Advice on our new science building
Ken, It all depends on how much solvent, acid, or whatever is getting airborne. In art, we just plain use too much for them to work for long. Try pouring a solvent on a rag and wiping an etching plate clean, doing open pan photo processes, or using a spray can. The bells will go off like a Cathedral.
It sounds like your people are working under that hood with Q-tip amounts or milking mice.
Monona
In a message dated 10/11/2012 1:49:06 AM Eastern Daylight Time, simolo**At_Symbol_Here**CHEM.CHEM.ROCHESTER.EDU<mailto:simolo**At_Symbol_Here**CHEM.CHEM.ROCHESTER.EDU> writes:
It is the University of Rochester. And the technology really is different. No one was more adamant than we would not use ductless hoods than I was. (Just ask the salesman who first approached me concerning these hoods - he thought he was going to be shot for wasting our time). I truly understand the resistance to their use. But when I learned about these, I realized we finally had a viable option to be environmentally friendly and safe. As safety professionals, it really is worth learning about what is available out there. You do have to take a careful look at how they will be used. You also need to be careful how you design your lab and your research in order to maximize filter life and maintain safety. For new installations, they pay for themselves the day they are put in. If you already have ductwork and controls in place, then the payback is more like 2 - 3 years.
We are very happy with how our lab turned out and also with these Green hoods. Here's a link to some pictures etc. http://www.chem.rochester.edu/highlights/fall11.php
Anyone that wants to come and look at our new lab is welcome to contact me and arrange a visit. Feel free to contact me if you just want to talk about the hoods. I am a strong believer in letting people know about a good solution to problems we all face.
Ken
On Oct 10, 2012, at 7:30 AM, JAKSAFETY**At_Symbol_Here**AOL.COM<mailto:JAKSAFETY**At_Symbol_Here**AOL.COM> wrote:
In addition to Rochester Institute of Technology, Butler University installed Green Fume Hoods in their Organic Labs. My understanding from Jo Wagner, lab manager, is that they are delighted with how they worked this past academic year. Ask Jo.
Green Fume Hood from Erlab (www.erlab.com<http://www.erlab.com/>) offer a wonderful cost saving alternative. The time has come to reconsider filtered fume hood. ... Jim Kaufman
In a message dated 10/10/2012 12:26:19 A.M. Eastern Daylight Time, LISTSERV**At_Symbol_Here**listserv.med.cornell.edu<mailto:LISTSERV**At_Symbol_Here**listserv.med.cornell.edu> writes:
Date: Mon, 8 Oct 2012 23:35:08 -0400
From: Ken Simolo <simolo**At_Symbol_Here**CHEM.CHEM.ROCHESTER.EDU<mailto:simolo**At_Symbol_Here**CHEM.CHEM.ROCHESTER.EDU>>
Subject: Re: Advice on our new science building
We did not find a ductless fume hood suitable for use in our undergraduate labs until the Green Hoods came along. These hoods take filtered fume hoods to a whole new level.
They have measured the absorption capacities of thousands of chemicals and published their results. Methylene Chloride is one of the lesser trapped chemicals in the Green Hood. After 672 g have been absorbed by the filters in a 6' hood, methylene chloride will pass through the first set of filters and set off the chemical alarm. If you violate protocols and continue to use the hood, after an additional 672 g of methylene chloride have been absorbed by the second set of filters, you will get exposure in the lab. But 672 g of methylene chloride is a lot of filter exposure for an undergraduate hood, no less twice that amount. After 2 1/2 semesters of undergraduate organic lab use, we have yet to have any chemicals breakthrough the first set of filters. One has to be very careful where you use these hoods and how you design the lab but they definitely have many appropriate uses.
Ken
Previous post | Top of Page | Next post